Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bio‐Oil by Esterification over Silica Sulfonic Acids

نویسندگان

  • Jinesh C Manayil
  • Amin Osatiashtiani
  • Alvaro Mendoza
  • Christopher M A Parlett
  • Mark A Isaacs
  • Lee J Durndell
  • Chrysoula Michailof
  • Eleni Heracleous
  • Angelos Lappas
  • Adam F Lee
  • Karen Wilson
چکیده

Fast pyrolysis bio-oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom- and energy-efficient route to upgrade pyrolysis bio-oils. Propyl sulfonic acid (PrSO3 H) silicas are active for carboxylic acid esterification but suffer mass-transport limitations for bulky substrates. The incorporation of macropores (200 nm) enhances the activity of mesoporous SBA-15 architectures (post-functionalized by hydrothermal saline-promoted grafting) for the esterification of linear carboxylic acids, with the magnitude of the turnover frequency (TOF) enhancement increasing with carboxylic acid chain length from 5 % (C3 ) to 110 % (C12 ). Macroporous-mesoporous PrSO3 H/SBA-15 also provides a two-fold TOF enhancement over its mesoporous analogue for the esterification of a real, thermal fast-pyrolysis bio-oil derived from woodchips. The total acid number was reduced by 57 %, as determined by GC×GC-time-of-flight mass spectrometry (GC×GC-ToFMS), which indicated ester and ether formation accompanying the loss of acid, phenolic, aldehyde, and ketone components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid

Crude bio-oil from pine chip fast pyrolysis was upgraded with olefins (1-octene, cyclohexene, 1,7-octadiene, and 2,4,4-trimethylpentene) plus 1-butanol (iso-butanol, t-butanol and ethanol) at 120 °C using a silica sulfuric acid (SSA) catalyst that possesses a good catalytic activity and stability. Gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FT-IR) and ...

متن کامل

Catalytic Upgrading of Bio-Oil by Reacting with Olefins and Alcohols over Solid Acids: Reaction Paths via Model Compound Studies

Catalytic refining of bio-oil by reacting with olefin/alcohol over solid acids can convert bio-oil to oxygen-containing fuels. Reactivities of groups of compounds typically present in bio-oil with 1-octene (or 1-butanol) were studied at 120 °C/3 h over Dowex50WX2, Amberlyst15, Amberlyst36, silica sulfuric acid (SSA) and Cs2.5H0.5PW12O40 supported on K10 clay (Cs2.5/K10, 30 wt. %). These compoun...

متن کامل

Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating

Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Lab...

متن کامل

Biofuel Production and Kinetics Study of Catalytic Microwave Pyrolysis of Douglas Fir Pellet over Activated Carbon Supported Metal Catalyst

The presented study aims to improve the quality of bio-oils by catalytic upgrading of pyrolysis bio-oil from microwave pyrolysis of biomass using transition metal modified activated carbon (AC) catalyst. A central composite experimental design (CCD) was used to optimize the reaction conditions for high quality bio-oil production. The effects of reaction temperature and reaction time on product ...

متن کامل

Vacuum residue upgrading by pyrolysis-catalysis procedure over mesoporous ZSM-5 zeolite

A systematic study of two-staged upgrading process of vacuum residue for light fuel production has been carried out in a semi-batch binary reactor apparatus over Y, ZSM-5 and alkaline treated ZSM-5 zeolites. Prepared catalyst samples were characterized with XRD and BET. Density and Viscosity physical properties parameters estimation, as well as GC/SIMDIS analyses were conducted on liquid produc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017